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Abstract. We investigate the optimal storage capacity of attractor neural networks with 
sign-constrained weights, which are prescribed a priori. The storage capacity is calculated 
by considering the fractional volume of weights which can store a set of random patterns 
as attractors, for a given stability parameter. It is found that this volume is independent 
of the particular distribution of signs (gauge invariance) and that the storage capacity of 
such constrained networks is exactly one half that of the unconstrained network with the 
corresponding value of the stability parameter. 

1. Introduction 

This paper is a sequel to a previous study [ 11 in which it was shown that a perceptron-like 
learning algorithm can be defined for a situation in which the perceptron weights have 
a fixed set of signs. That algorithm was then shown to converge, provided that a 
solution for a somewhat stronger set of inequalities exists. Since in a neural network 
the inputs to every neuron depend, in general, on a different, i.e. independent, set of 
synaptic efficacies, the learning theorem for one perceptron implies learning for the 
network. See, e.g., [ 2 ] .  The same holds for the existence of the required solution. 

To be specific, for a set of p patterns ti”( = * 1) ( i  = 1,. . . , N, g = 1, . . . , p )  to be 
stored in a network of N neurons, the interaction matrix, J , , ,  must be such as to satisfy 
the inequalities 

at each neuron i for every pattern p. The same patterns enter at every site j ,  but 
different sites i are affected by different sets of couplings. Hence, it is sufficient to 
discuss the existence of a solution of the set of inequalities at a single site, for the full 
set of patterns. This, of course, is the perceptron problem [3], which has been 
formulated in terms of a set of weights A, and a set of p normalised vectors 
4?(= * N - ” 2 )  [l]. In terms of these variables one is searching for a solution of the p 
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linear inequalities 

The convergence of the perceptron learning algorithm [3], and of its modified versions 
in [ 13, is ensured if there exists a normalised set of coefficients AT which satisfies the 
stronger inequalities 

The parameter 6, on the right-hand side of (3),  plays the role of a stability (or 
basin of attraction) parameter in a neural network [2 ,4 ,  51. Thus, the determination 
of the existence of a solution to inequalities (3) for a given value of 6 provides a 
double message. First, it ensures that the algorithm which depended on it converges, 
albeit to a solution of the weaker inequalities (2) .  Second, it establishes the maximal 
number of random patterns that can be stored with this particular stability parameter. 
To reach a solution of the more strongly imprinted patterns by the perceptron algorithm 
would demand, of course, the existence of a solution satisfying a yet stronger set of 
inequalities [2]. 

In [ 13 we have shown that one could devise algorithms for weight correction which 
respect a prescribed distribution of signs on the weights. Such algorithms have been 
shown to converge under the same formal assumptions as were required for the free 
perceptron. In other words, suppose that a set of signs g ,  = k l  is prescribed; then the 
target is to learn a set of weights A ,  which satisfy inequalities (2)  but with the constraint 
A,g, > 0 satisfied at every stage of the learning process. The necessary condition has 
been shown to be the existence of a solution AT which satisfies (3), with A,g, > 0, for 
all i. 

Following the ideas of Gardner [2], we proceed to compute the relative volume in 
interaction space in which both the inequalities (3) and the sign restrictions are satisfied. 
We find that 

(a) the volume is independent of the particular realisation of the g ,  ; this is the 
local gauge invariance discussed in [ l ] ;  

(b)  the number of random patterns which can be stored with a given stability 
parameter K-the minimal magnitude of the local field at a site-by an  optimal choice 
of the sign constrained weights is always one half that of the number which can be 
stored in the unconstrained networkt. This implies in particular, that the learning 
algorithm of [ 11 will converge for any set of signs g, with a stability parameter K - 6, 
for any loading level (Y = p /  N,  up to one half of the level for which the learning in 
the unconstrained network converges. 

2. The computation of the volume and the saddle-point equations 

Following Gardner [2], we proceed to compute the relative volume of the part of the 
N-dimensional space of weights of a single perceptron, A , ,  which 

-are normalised; 

* After the completion of this work we have received a preprint  by G A Kohring [6], arriving at very similar 
conclusions.  
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-embed a set of p random patterns 4: with stability parameter K ;  
-have a set of signs prescribed by g, = il. 

These conditions are summarised, respectively, by the relations 
N C A ~ = N  

, = I  

'f A,c+h:> K for all p 
, = I  

(4) 

A& > 0 for i = l ,  . . . ,  N. (6) 

Note that the normalisation on the weights chosen in (4) differs by a factor of N from 
that used in the discussion of the perceptron. 

This volume can be written as an integral over the full space of weights of the form 

where each of the three factors in the integrand represents the corresponding constraint 

The computation proceeds as in [ 2 ] ,  i.e. one concentrates on the computation of 
In( V), which is a quantity of order N. This quantity is averaged over the quenched 
distribution of the random patterns, 4, in the expectation that the fluctuations of In( V) 
from sample to sample will be negligible. The average of this quantity is then carried 
out by the replica technique. 

It is already at this point that one can establish the local gauge invariance of the 
theory for random patterns. Consider the average over the patterns of any function 
of V, equation ( 7 ) .  If the sign of g, ,  for any i, is reversed, the effect within V can be 
compensated by a change in the sign of the corresponding 4,. But since the 4 are 
averaged over both signs of each of their components, the averaged quantity is 
unchanged. Note that we have not averaged over the g, ,  but compared the same 
quantity for two specific realisations of the signs. The quantity of interest can therefore 
be written as 

(4), ( 5 )  and ( 6 ) .  

where the limit takes N to infinity and n to zero. Note that the lower limit on the A$' 
integrations has been set to zero. This expresses the gauge invariance explained above, 
which allows all g, = 1. 

Taking the theory to be replica symmetric, one performs all the integrals as well 
as take the limits in N and n. The result is expressed in terms of three parameters E, 
F and 9, which enter much in the same way as in the original calculation of Gardner. 
Namely, S can be written as 

S (E ,F ,q ,K)=aG, (q ,K)+Gi (E ,  F , 9 )  (9) 
where the order parameter 9 is the replica symmetric off-diagonal term of the correlation 
matrix of different possible solutions, i.e. 
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which measures the size of the solution volume (it is assumed to be independent of p 
and (+ for p # a) .  In particular, as q +  1 this volume shrinks to zero, identifying the 
storage capacity. The parameters E and  F are Lagrange parameters enforcing the 
normalisation, (4) and ( lo) ,  respectively. The parameter (Y = p /  N ,  as usual. The value 
of the function S, for a given value of K ,  is the minimal value of the right-hand side 
of (9),  under the variation of the other three parameters. All this is in complete parallel 
with [2]. In fact the only difference turns out to be in the expression for G, ,  which is 

x In ( lox dA exp( [ - f (2 E + F )  A’ - @ zA + E ] 6 
The only difference with Gardner’s result [2] is that the internal integral ranges here 
from 0 rather than from --CO. 

It is now straightforward to write down the limit implied in (8). The result is 

where 

The saddle-point equations are obtained from (12) by equating the derivatives of 
S with respect to E, F and q to zero. Instead of writing these equations in the general 
situation we shall proceed directly to the asymptotic region, in which the storage 
capacity is determined. That region is in the neighbourhood of q = 1. 

3. The saddle-point equations near saturation 

We shall concentrate first on the equations which determine F and E in terms of q. 
Then the final equation will be studied by comparison with the final Gardner equation. 
We shall assume that as q +  1, F / ( 2 E + F )  diverges, as in [2] and verify that the 
solution satisfies this condition. In this limit, if z>O, we can write 

exp(-w2//2) = f[ 1 - e r f ( z n / f i ) ]  

1 
z=- exp( - z2n2 /2 )  

2J;; n z  

where erf( ) is the error function. For z < 0 the integral approaches unity up  to terms 
which are exponentially small. 



Neural net works with sign - constra ined synapses 469 1 

The part of S which depends on E and F is approximately 

S = i q F - $ I n  F - i l n ( 2 € +  F)+- +E. 
’ E + F  

Consequently the saddle-point equations for these variables are 

1 F 
4--= 2F 2(2E + F)”  

E + F =  ( 2 E  + F)* 

Near q = 1 these equations can be solved to give E and F as a power expansion in 
1 - q. The solution is 

-1 +4(1- 4 )  1 -3(1-q)  
E =  F =  

4(1- q)2  2 ( 1 - q ) 2  . 
The condition Cl = F / ( 2 E  + F) + Q: as q + 1 is ;rldeed verified. 

4. The critical storage level 

The final step is to introduce the expressions for E and F in terms of q into S, to 
write the saddle-point equation for q and to find the highest value of CY( K )  for which 
this equation has a non-zero solution. When E and F are substituted in S one finds 
to leading order in 1 - q 

This expression can be compared with (20) of [2] which, to leading order in 1 - q, is 

Hence the correspondence of the saddle-point equations is complete if (Y in the present 
calculation is substituted by a/2 of the unconstrained network. The critical value of 
(Y, a , ( K )  is one half the critical storage of the unconstrained network. In particular, 
for K = O  the constrained network can store N patterns, compared with 2 N  for the 
unconstrained one. 

5. Conclusion 

The above discussion demonstrates that when synaptic signs are prescribed and 
quenched synaptic coefficients can be found to store half as many random patterns as 
would be possible for an unconstrained network, with the same local stability parameter. 
The finiteness of the volume in the space of coupling constants guarantees that in the 
limit of a large network such a set of couplings can be found with probability one for 
any set of random patterns, below saturation. 

In our previous study [ l ]  the discussion was restricted to the learning of random 
patterns with zero stability parameter. Nevertheless, the search in weight space for 
regions which store random patterns with a finite stability parameter is directly relevant, 
since the maximal stability parameter for a given number of random patterns controls 
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the speed of convergence of the algorithm at zero stability [ 6 ] .  As has been shown by 
Gardner [2], the extension of the learning algorithm to the case of a finite stability 
parameter presents no difficulty. 

Since the storage capacity in the constrained network is half that of the uncon- 
strained case, one may be led to speculate that the solution for the coupling matrix in 
the constrained case is attained by pruning half of the synapses, namely those which 
are ‘of the wrong sign’. This would imply that half of the weights will be zero. We 
can test this conclusion by considering the distribution of the values of any given 
weight, e.g. A , ,  as given by 

n, J dA,@(g,A, )a(x, A: - N 1 nF @(x, A,4: - K 18 (A0 - A, 1 
P (A”)  = (( I I ,JdA,@(g ,A , )S (X,AAf-N)n ,  @(X,AA,4;-K) 

Using the replica method we arrive at 

where 

fi(E, F, z )  = JT 2 ( E  + F )  ( z  - Jm 2 ( E +  F) g,Ao). 

In  particular, near saturation, 

P(A,) =@(g ,Ao)  e x p ( - A i / d G )  

which is a Gaussian of variance 2, truncated on the side of the wrong signs. 
One can therefore conclude that no ‘wrong sign’ weights of the unconstrained 

network are actually pruned. Instead, the constrained network stabilises the patterns 
by finding a new solution which is uncorrelated with the unconstrained ones. The low 
incidence of zero weights is confirmed by numerical experiments. 

For a purely ferromagnetic (purely excitatory) network the system is equivalent to 
a ferromagnetic spin glass. The truncated Gaussian distribution of weights still allows 
for a multi-valley energy landscape, in which the N patterns can be stored, as in any 
other distribution of signs. 

It has also been shown that the volume in weight space which can store a given 
number of random patterns is independent of the particular distribution of signs, i.e. 
the gauge invariance invoked in [ l ] .  The question of the eventual dynamics and  the 
concomitant basins of attraction has been left open. This question becomes of special 
concern when one realises that sets of random patterns can even be stored with a 
purely ferromagnetic (purely excitatory) matrix. 

It turns out that the invariance exrends also to the dynamics. On the formal level 
one obscrves that starting from any initial configuration of the network the successive 
configuration will be completely determined by the distribution of local fields generated 
by the initial configuration, via the given set of couplings [4,5]. The probability 
distribution of these local fields, for a typical set of synaptic coefficients, can be 
computed directly [4,5] and  depends on the stored patterns in just the same way as 
the volume does (e.g. equation ( 7 ) ) .  In other words, it is invariant under the change 
of the sign distribution. 
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